Chemical Shift, Chemical Shift Anisotropy, and Spin-Lattice Relaxation Time in ⁸⁹Y-MAS and -Static NMR of Yttrium Compounds

Toshie Harazono* and Tokuko Watanabe†

Research Center, Mitsubishi Chemical Co., Ltd., 1000, Kamoshida, Aoba-ku, Yokohama 227 †Tokyo University of Fisheries, 4-5-7, Kounan, Minato-ku, Tokyo 108

(Received February 18, 1997)

The chemical shift, the range of chemical shift anisotropy, and the spin-lattice relaxation times (T_1) in Y_2O_3 , $Y_3Al_5O_{12}$, and Y_2O_2S have been measured by solid state ⁸⁹Y (nuclear spin 1/2)-MAS and -static NMR. The static NMR data and T_1 are reported for the first time. The range of chemical shift anisotropy was 1500—2400 Hz. This range was influenced more by the nature of the atom bound to Y than by the coordination number or the crystallographic symmetry of Y. Very long T_1 values were obtained for Y_2O_2S (6.61 h) and Y_2O_3 (3.92 h at 24d site and 3.81 h at 8b site). On the other hand, the T_1 value (1.10 h) of $Y_3Al_5O_{12}$ is much shorter compared with those of Y_2O_2S and Y_2O_3 . The next-nearest neighboring atom of Y in $Y_3Al_5O_{12}$ is identified as Al, which has the nuclear spin 5/2 of 100% natural abundance. The most likely origin of significantly shorter T_1 of $Y_3Al_5O_{12}$ is a dipole—dipole interaction between ⁸⁹Y and ²⁷Al.

Despite the fact that ⁸⁹Y has 100% natural abundance with nuclear spin 1/2, only a limited amount of information¹⁻⁸⁾ is available on ⁸⁹Y solid state NMR because of its low resonance frequency (14.706 MHz at 7.05 T), low sensitivity (1.08×10⁻⁴ times to ¹H), and long spin-lattice relaxation time (several hours). Oldfield et al.^{1,2)} reported the ⁸⁹Y-MASNMR spectra of several yttrium compounds such as Y₂O₃ and YCl₃·6H₂O. Further, Dupree and Smith³⁾ investigated the structural influences on the MAS NMR chemical shifts and resonance linewidths of ⁸⁹Y in Y₂O₃, yttrium aluminates and yttrium silicates. The spin-lattice relaxation time (T_1) and the spin-spin relaxation time (T_2) of ⁸⁹Y were measured in single crystal Y₃Fe₅O₁₂ at 4.2 K by Shemyakov and Savosta⁴⁾ and T_2 was measured in YBa₂Cu₃O₇ by Balakrishnan et al.⁵⁾ and Han et al.⁶⁾ In these two Y compounds, paramagnetic atoms, Fe and Cu, shortened the T_1 to several ms. Grey et al. 7) studied rareearth-doped yttrium stannates and titanates (Y2Sn2O7 and Y₂Ti₂O₇) using ⁸⁹Y-MAS NMR, in which rare-earth atoms doping affected both the chemical shift and linewidths. 89Y-MAS NMR spectra of Si₃N₄ sintered with the 15% Y₂O₃ and 3 wt% Yb₂O₃ were reported by MacKenzie and Meinhold.⁸⁾ In all studies, no information on a chemical shift anisotropy and the spin-lattice relaxation times in paramagnetic-free ⁸⁹Y compounds has been presented.

Yttrium compounds have become indispensable materials for superconductors, the matrices of phosphors, and other uses. For example, $Y_3Al_5O_{12}$ is generally used as the matrix of Tb-doped green phosphor, and both Y_2O_2S and Y_2O_3 are used as the matrices of Eu-doped red phosphors. The ability of such superconductors and phosphors strongly depends on the physical and chemical properties of the materials. Therefore, we have to establish a method to assess them pre-

cisely and easily. In a series of our investigations, ⁸⁹Y solid state NMR was used for the purpose, although 89Y NMR is rather difficult technically, as mentioned above. Generally, the chemical shift anisotropy in a static NMR tells us the symmetry of the crystalline field around Y atoms and T_1 and T_2 become a probe for the distribution of other nuclei and/or paramagnetic atoms surrounding the observed Y atom. Before we investigate and evaluate rather complex rare-earth element doped materials, it is important to know 89Y NMR properties such as isotropic chemical shift, chemical shift anisotropy and T_1 and T_2 of pure Y compounds, $Y_3Al_5O_{12}$, Y₂O₂S, and Y₂O₃, which are used as the mother compounds of other materials. In the present paper, we assign anisotropic chemical shifts in their static ⁸⁹Y NMR spectra, in comparison with isotropic chemical shifts calculated from the static NMR spectra and those measured in MAS-NMR spectra. And the spin-lattice relaxation times were measured for the first time. The results obtained in this work show that ⁸⁹Ysolid state NMR becomes a highly useful probe for elucidating the crystal structure and physical and chemical properties of Y compounds.

Experimental

Materials: The samples employed in this investigation were prepared by the method described in the handbook of phosphors. ⁹⁾ The preparation procedures are as follows. $Y_3Al_5O_{12}$: BaF_2 was added to raw materials, Y_2O_3 and Al_2O_3 , as the flux in an alumina crucible; the mixture was fired at 1470 °C for several hours.

 Y_2O_2S : Na_2CO_3 , K_3PO_4 , S, and C were added to a raw material, Y_2O_3 , as the flux in an alumina crucible; the mixture was fired at $1200\,^{\circ}C$ for several hours.

 Y_2O_3 : BaCl₂·2H₂O, H₃BO₃, and LiCl were added to a raw material, Y_2O_3 , as the flux in an alumina crucible; the mixture was fired at 1450 °C for several hours.

 Y_2O_3 , $Y_3Al_5O_{12}$, and Y_2O_2S prepared by the above methods were washed with pure water for several times and dried. The raw material, Y_2O_3 , was prepared by Mitsubishi Chemical Co., Ltd., and the raw material, Al_2O_3 , and other materials used for the flux were purchased from Wako Co., Ltd., Junsei Co., Ltd., and Kanto Chemical Co., Ltd. All materials purchased were reagent grade.

Apparatus and Measurements: The crystal structure of the employed samples was identified in powder by X-ray diffractometer with monochromated Cu $K\alpha$ (Philips PW1700 diffractometer). The amount of impurity was determined by Seiko-SPS-1200A ICP and Rigaku 3370 fluorescence X-ray spectrometer. The amounts of impurities of all samples were less than 1 ppm. The measurements of 89 Y NMR spectra were carried out at 14.706 MHz on a Bruker MSL-300 spectrometer. The MAS spectra and the static spectra were measured with a low frequency CP MAS probe (dia. 7 mm) at a spinning rate of 5 kHz, and with a static probe (dia. 10 mm). A 90° pulse widths were 11 µs (MAS) and 15 µs (static). An aqueous solution of 1.5 M $Y(NO_3)_3$ aqueous solution (1 M = 1 mol dm⁻³) was used as 0 ppm external reference. A single pulse was used for MAS and static measurements. All measurements were performed at room temperature.

Results and Discussion

The crystal structures of $Y_3Al_5O_{12}$, Y_2O_2S , and Y_2O_3 identified by X-ray diffraction are shown in Figs. 1-(a), -(b), and -(c), $^{10,11)}$ respectively. The coordination schemes of Y are schematically depicted in Fig. 2 according to the individual crystallographic symmetries. The crystallographic characteristics, i.e., coordination number of Y atom and crystallographic symmetry, are given in columns (1) and (2) in Table 1.

The 89 Y-MAS and -static spectra of $Y_3Al_5O_{12}$, Y_2O_2S , and Y_2O_3 are shown in Figs. 3, 4, and 5, respectively. The chemical shifts of MAS signals, σ_{iso} (MAS), are given in column (3) of Table 1.

Assignment of ⁸⁹Y-Static and -MAS Signals: As $Y_3Al_5O_{12}$ has one type of yttrium atom with the symmetry of $C_{8\nu}$ (axial symmetry), only one peak appeared at 239 ppm in the ⁸⁹Y-MAS NMR spectrum, as shown in Fig. 3-(a). The ⁸⁹Y-static signal showed a typical powder pattern of the axial symmetry¹²⁾ as indicated in Fig. 3-(b). If we assume $\sigma_{22} = \sigma_{33} = \sigma_{\perp}$, $\sigma_{11} = \sigma_{\parallel}$, where σ represents the chemical shift tensor, σ_{\parallel} and σ_{\perp} in the static spectra of $Y_3Al_5O_{12}$ are assigned to $\sigma_{\parallel} = 306$ ppm and $\sigma_{\perp} = 203$ ppm, as shown in Fig. 3-(b). These values were tabulated in column (4) of Table 1. Further, the isotropic chemical shift, σ_{lso} (static), calculated from $(\sigma_{\parallel} + 2\sigma_{\perp})/3$ was 237 ppm, which is shown in column (5) in Table 1. The calculated σ_{lso} (static) is in good agreement with the σ_{lso} (MAS) of $Y_3Al_5O_{12}$ within the experimental error.

 89 Y-MAS and -static NMR spectra of Y_2O_2S are shown in Figs. 4-(a) and -(b), respectively. As the symmetry of Y atom in Y_2O_2S is $C_{3\nu}$ (axial symmetry), only one peak was observed in the MAS spectrum and the powder pattern of axial symmetry appeared in the static spectrum similar to $Y_3Al_3O_{12}$. The σ_{iso} (static), 287 ppm, is in good agreement with the σ_{iso} (MAS), 293 ppm. In these two cases of $Y_3Al_5O_{12}$ and Y_2O_2S , the static NMR signals sensitively

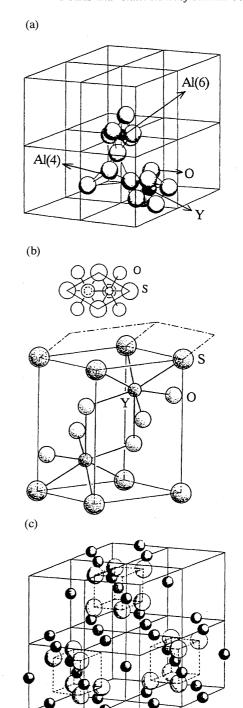


Fig. 1. Crystal structures of $Y_3Al_5O_{12}$ (a), Y_2O_2S (b), and Y_2O_3 (c).

reflected the coordination symmetry around Y.

Two peaks with the ratio of signal intensities of 3:1 appeared in the 89 Y-MAS spectrum of Y_2O_3 as shown in Fig. 5-(a). According to the Y_2O_3 crystal scheme 10 shown in Fig. 1-(c), the larger peak at 330 ppm in the 89 Y-MAS spectrum is assigned to Y in 24d site and the smaller peak at 289 ppm is assigned to Y in 8b site.

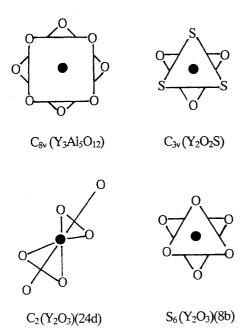
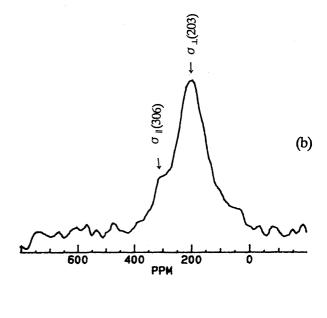
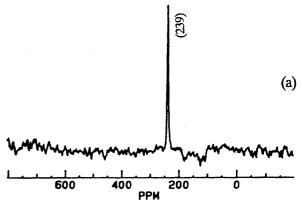



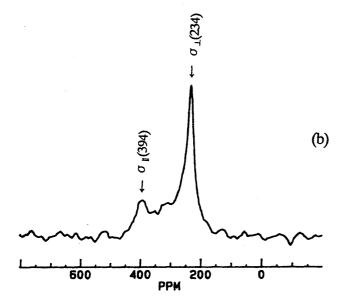
Fig. 2. Coordination schemes of yttrium compounds. •: Y atom.

The Y atom at 24d site is in C_2 (rhombohedral) symmetry, and would show the typical anisotropic powder pattern in the static spectrum. On the other hand, Y at 8b site is in S_6 (axial) symmetry. Considering these facts and that σ_{iso} (static)= σ_{iso} (MAS), signals in the static spectrum are uniquely assigned for the first time as shown in Fig. 5-(b), i.e. σ_{11} = 399 ppm, σ_{22} = 299 ppm, and σ_{33} = 282 ppm for Y(24d), and σ_{\parallel} = 352 ppm and σ_{\perp} = 250 ppm for Y(8b). The σ_{iso} (static), {= $(\sigma_{11} + \sigma_{22} + \sigma_{33})/3$ } and σ_{iso} (MAS) are 327 ppm and 330 ppm for 24d site, and 284 ppm and 289 ppm for 8b site, respectively, as tabulated in Table 1.

As mentioned above, ⁸⁹Y solid state NMR has been scarcely reported because of its technical difficulty. The static NMR data for these three typical Y compounds, which are presented in this paper for the first time, could become useful as a standard because these three Y compounds are indispensible basic compounds in the phosphors.

Effect of the Coordination State to the Isotropic Chemical Shift: Dupree and Smith³⁾ made the following comment




Fig. 3. Solid state NMR spectra of Y₃Al₅O₁₂. (a): MAS; spectral width: 15000 Hz, data point: 4 K, pulse width: 11 μs, aquisition number: 23 times, recycle time: 1000 s, spinning rate: 5000 rps. (b): Static; spectral width: 50000 Hz, data point: 4 K, pulse width: 7 μs, aquisition number: 159 times, recycle time: 1000 s.

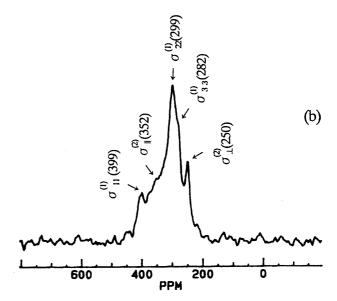

on the ⁸⁹Y isotropic chemical shifts of compounds containing Y-O-Y, Y-O-Al, or Y-O-Si bonds: The isotropic chemical

Table 1. Crystallographic and ⁸⁹Y NMR Characteristics for Yttrium Compounds

Column		$Y_3Al_5O_{12}$	Y_2O_2S	Y ₂ O ₃ (24d)	Y ₂ O ₃ (8b)
(1)	Coordination number	8	. 7	6	6
	Bind of coordinating atoms	(O8)	(O4, S3)	(O6)	(O6)
(2)	Crystallographic symmetry	$C_{8\nu}(a,s)^{a)}$	$C_{3\nu}(a,s)$	$C_2(r,s)^{b)}$	$S_6(a,s)$
(3)	Chemical shift of MAS, σ_{iso} (MAS), in ppm	239	293	330	289
(4)	Chemical shift of static in ppm	σ_{\parallel} =306	σ_{\parallel} =394	σ_{11} =399	σ_{\parallel} =352
		σ_{\perp} =203	σ_{\perp} =234	$\sigma_{22} = 299$	σ_{\perp} =250
				σ_{33} =282	
(5)	Isotropic chemical shift of static, $\sigma_{\rm iso}$ (static), in ppm	237	287	327	284
(6)	Chemical shift anisotropy in Hz, () in ppm	1510 (103)	2360 (161)	1600 (109)	1500 (102)
(7)	Half-width of signal under MAS in Hz	69.4	75.5	74.1	74.1
(8)	Spin-lattice relaxation time (T_1) in s, () in h	3950 (1.10)	23800 (6.61)	14100 (3.92)	13700 (3.81)

a) (a,s): axial symmetry. b) (r,s): rhombohedral symmetry.

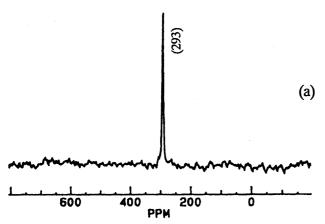


Fig. 4. Solid state NMR spectra of Y₂O₂S. (a): MAS; spectral width: 15000 Hz, data point: 4 K, pulse width: 11 μs, the signal was aquisited after 150000 s (41.7 h) after dummy one pulse, spinning rate: 5000 rps. (b): Static; spectral width: 50000 Hz, data point: 4 K, pulse width: 7 μs, aquisition number: 87 times, recycle time: 1000 s.

shift is sensitive to the local coordination number and to the nature of the next-nearest neighboring atoms. In the case of compounds with the same kind of next-nearest neighboring atoms, the central Y ion becomes more ionic with increasing in the coordination number, and hence the isotropic Y signal shifts to the higher field. On the other hand, in the case of compounds with the different kind of the next-nearest atoms, electron-negativities (EN) of the next-neighboring atom become more effective and the isotropic Y signal shifts to the higher field with increasing in EN (for example in the order of Y–O–Y (EN(OY) \approx 3.69), Y–O–Al (EN(OAl) \approx 3.73), and Y–O–Si (EN(OSi) \approx 4.0)). 3.13) The observed isotropic chemical shift of Y₃Al₅O₁₂ showed the smallest value (i.e. shift to the highest field) on comparison to others. This is reasonable because O–Al is more electronegative than O–Y and the

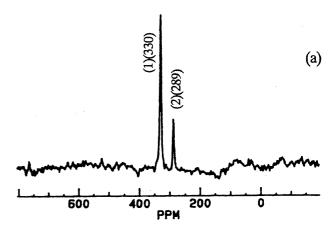


Fig. 5. Solid state NMR spectra of Y_2O_3 . (a): MAS; spectral width: 15000 Hz, data point: 4 K, pulse width: 7 μ s, aquisition number: 60 times, recycle time: 1000 s, spinning rate: 5000 rps. (b): Static; spectral width: 50000 Hz, data point: 4 K, pulse width: 7 μ s, aquisition number: 63 times, recycle time: 1000 s.

coordination number is 8.

Concerning the ⁸⁹Y NMR of Y_2O_2S , no data are available. Y in Y_2O_2S has the axial symmetry and is coordinated by 4 oxygen and 3 sulfur atoms. The chemical shift of the axially 7O-coordinated ⁸⁹Y in Y-O-Y, if it exists, will be expected to appear at higher field than the σ_{iso} (MAS) = 289 ppm of the 6O-coordinated ⁸⁹Y in Y_2O_3 (axially symmetric 8b site). The σ_{iso} (MAS) of the ⁸⁹Y in Y_2O_2S , however, was 293 ppm and the signal appeared in the lower field than that of 289 ppm. This result is reasonably explained by the difference of electronegativity of the neighbor atoms, that is, the fact that the EN(S)=2.5 is smaller than EN(O)=3.5.¹⁴) A similar large low-field shift by the coordinated S atom was observed in S-coordinated Al and O-coordinated Al (129 ppm for Al-S₄ and 40 ppm for Al-O₄).¹⁵)

Chemical Shift Anisotropy and Half-Width of Signal:

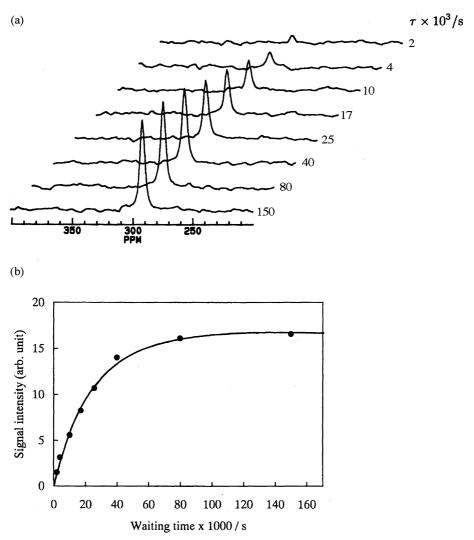


Fig. 6. (a): 89 Y-MAS NMR spectra of Y_2O_2S for the spin-lattice relaxation time measurement by the saturation recovery method. Spectral width: 15000 Hz, data point: 2 K, 90° pulse width: 11 μ s, aquisition number: 1 time, spinning rate: 5000 rps. (b): Plot of the peak intensity (I) vs. waiting time (τ). The curve was fitted by the function of $I = I_0 \{1 - \exp(-\tau/T_1)\}$, where I_0 is constant, by employing the non-linear least square method. RSS = 0.086.

The chemical shift anisotropies calculated from $(\sigma_{\parallel} - \sigma_{\perp})$ or $\{\sigma_{11} - (\sigma_{22} + \sigma_{33})/2\}$ of static signals and the half-widths of the signals under MAS are tabulated in columns (6) and (7) in Table 1, respectively. Both in Y₂O₃ containing Y-O-Y bonds in 6O-axial or rhombohedral symmetries, and in Y₃Al₅O₁₂ containing Y-O-Al bonds in 8O-coordinated state, the chemical shift anisotropies of the ⁸⁹Y are in the range of 1500-1600 Hz (100-110 ppm). This indicates that the next-nearest atom X in the Y-O-X bond and the coordination symmetry do not strongly affect the chemical shift anisotropy in Y-O_n systems. On the other hand, in Y_2O_2S in the 4O- and 3S-axially coordinated state, the chemical shift anisotropy was 2360 Hz (161 ppm) and is significantly larger than that in others (Y-O system). The chemical shift anisotropy might be influenced much more by the type of atom directly bonded to Y than the coordination number and the crystallographic symmetry.

Spin-Lattice Relaxation Time: A typical example of the 89 Y-MAS spectra for determination of T_1 by the satura-

tion recovery method and of the plot of the signal intensity vs. waiting time (τ) is shown for Y_2O_2S in Figs. 6-(a) and -(b), respectively. The curve was fitted by employing the non-linear least square method to the function of $I = I_0\{1 - \exp(-\tau/T_1)\}$, where I_0 is constant. The obtained T_1 values of three compounds are given in column (8) in Table 1.

The T_1 value of Y_2O_2S was extremely long, 6.61 h, and the T_1 values of Y_2O_3 were 3.92 h and 3.81 h for the ⁸⁹Y at 24d and 8b sites, respectively. The chemical shift anisotropy can affect the spin-lattice relaxation time in such a way that T_1 is reversibly proportional to the square of the anisotropy. Although the chemical shift anisotropy, as mentioned above, is about 1.5 times larger in Y_2O_2S than in Y_2O_3 , the T_1 value of Y in Y_2O_2S is not smaller by a factor of 1/2.25, but is rather larger than that in Y_2O_3 . Therefore, the chemical shift anisotropy should not be an origin of the spin-lattice relaxation mechanism. The reason why Y_2O_2S has a such long T_1 is not clear in this study. One possibility may be the rigidity of the crystal of Y_2O_2S .

On the other hand, T_1 of $Y_3Al_5O_{12}$ is 1.10 h and it is much shorter compared with those of Y_2O_2S and Y_2O_3 . If we consider about the same chemical shift anisotropy between $Y_3Al_5O_{12}$ and Y_2O_3 (24d and 8b), it is easily concluded that the anisotropy is not the main origin of differences of the spin-lattice relaxation time in these case.

The neighbor atom of Y–O– in Y₂O₂S and Y₂O₃ is Y, which has the nuclear spin $I^{Y} = 1/2$ and the gyromagnetic ratio $\gamma^{Y} = -1.3108 \times 10^{7} \text{ rad} \cdot \text{Tesla}^{-1} \cdot \text{sec}^{-1}$, whereas that in Y₃Al₅O₁₂ is ²⁷Al, which has the nuclear spin $I^{Al} = 5/2$ and $\gamma^{Al} = 6.9704 \times 10^{7} \text{ rad} \cdot \text{Tesla}^{-1} \cdot \text{sec}^{-1}$. Therefore, the most likely origin of the much shorter T_1 of Y₃Al₅O₁₂ is thought to be the dipole–dipole interaction between ⁸⁹Y and ²⁷Al. ¹⁶)

Conclusions

Tb-doped Y₃Al₅O₁₂ and Eu-doped Y₂O₂S or Y₂O₃ are green and red phosphors, respectively. Therefore, it is very important to evaluate the chemical and physical properties of the phosphors precisely at the atomic level for better development of the phosphors. Recently, ⁸⁹Y solid state NMR spectroscopy is highlighted to this purpose, despite the technical difficulty. Before proceeding the investigation in rather complex materials, i.e., rare-earth ion-doped Y compounds, we have to confirm the NMR property of mother Y compounds of phosphors. In the present paper, the anisotropic chemical shift in the static NMR, observed and calculated isotropic chemical shifts, and the spin-lattice relaxation time of ⁸⁹Y in the three mother compounds, Y₃Al₅O₁₂, Y₂O₂S, and Y2O3, were presented, some of which are the first data investigated so far. These data will be useful for coming studies of the phosphor.

We wish to thank Mr. R. Adachi (Kasei Optonix Co., Ltd.) and Miss C. Miura (Mitsubishi Chemical Co., Ltd.) for the preparation of compounds investigated.

References

1) A. R. Thompson and E. Oldfield, J. Chem. Soc., Chem.

Commun., 1987, 27.

- 2) P. D. Battle, B. Montez, and E. Oldfield, J. Chem. Soc., Chem. Commun., 1988, 584.
- 3) R. Dupree and M. E. Smith, Chem. Phys. Lett., 148, 41 (1988).
- 4) A. A. Shemyakov and M. M. Savosta, Fiz. Tverd. Tela (Leningrad), 35, 236 (1993).
- 5) G. Balakrishnan, L. W. J. Caves, R. Dupree, D. M. Paul, and M. E. Smith, *Physica C*, **161**, 9 (1989).
- 6) Z. P. Han, R. Dupree, D. M. Paul, A. P. Howes, and L. W. J. Caves, *Physica C*, **181**, 355 (1991).
- 7) C. P. Grey, M. E. Smith, A. K. Cheethan, C. M. Dobson, and R. Dupree, *J. Am. Chem. Soc.*, **112**, 4670 (1990).
- 8) K. J. D. MacKenzie and R. H. Meinhold, *J. Mater. Chem.*, **4**, 1595 (1994).
- 9) "Handbook of Phosphors," ed by Phosphor Research Society, p. 168 (Y₂O₃), p. 171 (Y₂O₂S), and p. 268 (Y₃Al₅O₁₂), Ohm Co., Ltd., Tokyo (1987).
- 10) F. S. Galasso, "International Series of Monographs in Solid State Physics, Vol. 7, Structure and Properties of Inorganic Solids," Pergamon Press Ltd. Pub., Oxford (1970), p. 244 (Y₃Al₅O₁₂), p. 102 (Y₂O₃).
- 11) S. Yokono, S. Imanaga, and T. Hoshina, J. Phys. Soc. Jpn., **46**, 1882 (1979).
- 12) M. Mehring, "Principles of High Resolution NMR in Solids," Springer-Verlag, Berlin and Heidelberg (1976,1983), p. 27.
- 13) N. Janes and E. Oldfield, *J. Am. Chem. Soc.*, **107**, 6769 (1985).
- 14) L. Pauling, "The Nature of the Chemical Bond and the Structure of Molecules and Crystals," Cornell University Press, (1940), p. 64.
- 15) T. Harazono, Y. Tokunaga, R. Adachi, and T. Watanabe, "Proceedings of the 34th NMR Symposium," Kyoto, October 1995, Abstr., p. 145.
- 16) A. Abragam, "The Principles of Nuclear Magnetism," the Clarendon Press, Oxford (1961), Chap. 8.